Heights in Finite Projective Space, and a Problem on Directed Graphs

نویسندگان

  • MELVYN B. NATHANSON
  • BLAIR D. SULLIVAN
چکیده

Let Fp = Z/pZ. The height of a point a = (a1, . . . , ad) ∈ F d p is hp(a) = min n Pd i=1(kai mod p) : k = 1, . . . , p − 1 o . Explicit formulas and estimates are obtained for the values of the height function in the case d = 2, and these results are applied to the problem of determining the minimum number of edges the must be deleted from a finite directed graph so that the resulting subgraph is acyclic. 1. Heights in finite projective space Let F be a field and let F ∗ = F \{0}. For d ≥ 2, we define an equivalence relation on the set of nonzero d-tuples F d\{(0, . . . , 0)} as follows: (a1, . . . , ad) ∼ (b1, . . . , bd) if there exists k ∈ F ∗ such that (b1, . . . , bd) = (ka1, . . . , kad). We denote the equivalence class of (a1, . . . , ad) by 〈a1, . . . , ad〉. The set of equivalence classes is called the (d − 1)-dimensional projective space over the field F , and denoted P(F ). We consider projective space over the finite field Fp = Z/pZ. For every x ∈ Fp, we denote by x mod p the least nonnegative integer in the congruence class x. We define the height of the point a = 〈a1, . . . , ad〉 ∈ P(Fp) by hp(a) = min {

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twin minus domination in directed graphs

Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...

متن کامل

Points of Bounded Height on Algebraic Varieties

Introduction 1 1. Heights on the projective space 3 1.1. Basic height function 3 1.2. Height function on the projective space 5 1.3. Behavior under maps 7 2. Heights on varieties 9 2.1. Divisors 9 2.2. Heights 13 3. Conjectures 19 3.1. Zeta functions and counting 19 3.2. Height zeta function 20 3.3. Results and methods 22 3.4. Examples 24 4. Compactifications of Semi-Simple Groups 26 4.1. A Con...

متن کامل

Signed total Roman k-domination in directed graphs

Let $D$ be a finite and simple digraph with vertex set $V(D)$‎.‎A signed total Roman $k$-dominating function (STR$k$DF) on‎‎$D$ is a function $f:V(D)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each‎‎$vin V(D)$‎, ‎where $N^{-}(v)$ consists of all vertices of $D$ from‎‎which arcs go into $v$‎, ‎and (ii) every vertex $u$ for which‎‎$f(u)=-1$ has a...

متن کامل

Directed domination in oriented hypergraphs

ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...

متن کامل

Kinematic Mapping and Forward Kinematic Problem of a 5-DOF (3T2R) Parallel Mechanism with Identical Limb Structures

The main objective of this paper is to study the Euclidean displacement of a 5-DOF parallel mechanism performing three translation and two independent rotations with identical limb structures-recently revealed by performing the type synthesis-in a higher dimensional projective space, rather than relying on classical recipes, such as Cartesian coordinates and Euler angles. In this paper, Study's...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008